Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
J. appl. oral sci ; 17(3): 220-223, May-June 2009. ilus, graf, tab
Article in English | LILACS | ID: lil-514037

ABSTRACT

OBJECTIVE: The purpose of this study was to evaluate the sealing ability of castor oil polymer (COP), mineral trioxide aggregate (MTA) and glass ionomer cement (GIC) as root-end filling materials. Forty-five single-rooted human teeth were cleaned and prepared using a step-back technique. The apical third of each root was resected perpendicularly to the long axis direction. All teeth were obturated with gutta-percha and an endodontic sealer. After, a root-end cavity with 1.25-mm depth was prepared using a diamond bur. The specimens were randomly divided into three experimental groups (n=15), according to the root-end filling material used: G1) COP; G2) MTA; G3) GIC. The external surfaces of the specimens were covered with epoxy adhesive, except the root-end filling. The teeth were immersed in rhodamine B dye for 24 hours. Then, the roots were sectioned longitudinally and the linear dye penetration at the dentin/material interface was determined using a stereomicroscope. ANOVA and Tukey's tests were used to compare the three groups. The G1 group (COP) presented smaller dye penetration, statistically different than the G2 (MTA) and G3 (GIC) groups (p<0.05). No statistically significant difference in microleakage was observed between G2 and G3 groups (p>0.05). The results of this study indicate that the COP presented efficient sealing ability when used as a root-end filling material showing results significantly better than MTA and GIC.


Subject(s)
Humans , Biopolymers , Castor Oil , Dental Leakage/prevention & control , Retrograde Obturation , Root Canal Filling Materials , Aluminum Compounds , Calcium Compounds , Dental Marginal Adaptation , Drug Combinations , Glass Ionomer Cements , Oxides , Silicates
SELECTION OF CITATIONS
SEARCH DETAIL